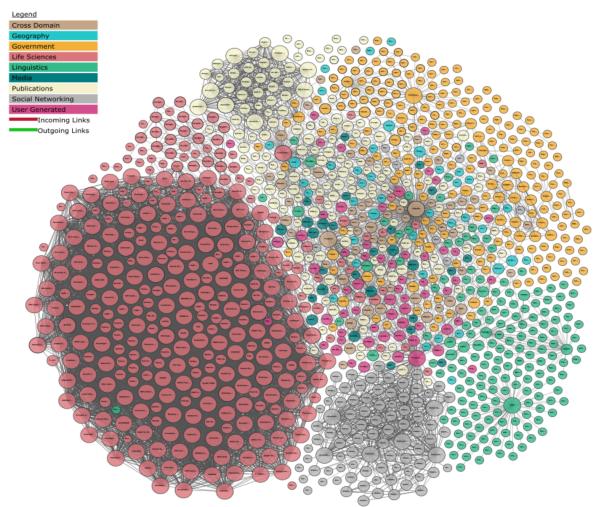
Explainable Temporal Fact Validation Through Temporal Constraints Discovery In Knowledge Graphs

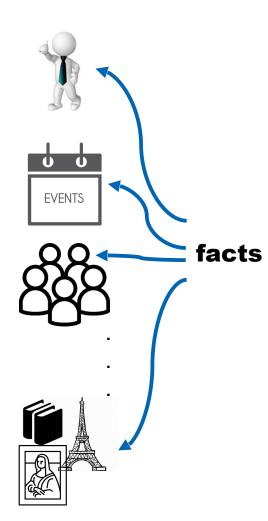
FATIHA SAÏS

Joint Work With:

- T. Soulard, J. Raad,
- J. E. MALAVERRI, G. QUERCINI

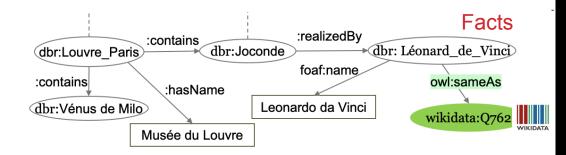

LISN, CNRS & Université Paris Saclay

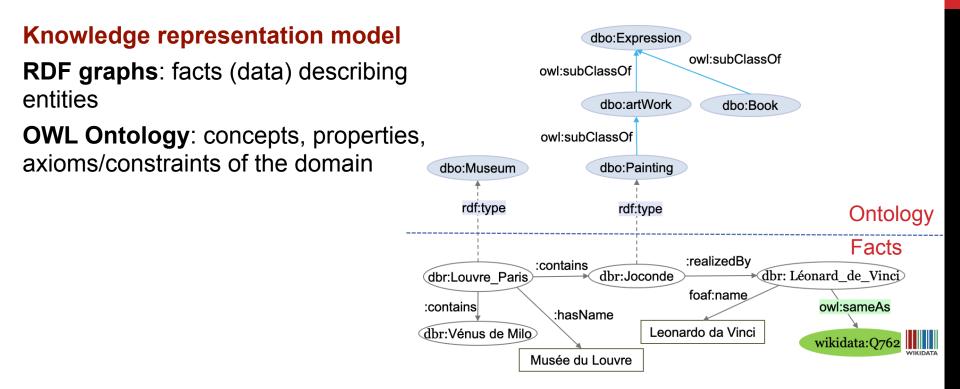
Séminaire SESAME - INRAE - 10/06/2024



"Linking Open Data cloud diagram 2017, by Andrejs Abele, John P. McCrae, Paul Buitelaar, Anja Jentzsch and Richard Cyganiak. http://lod-cloud.net/"

2





"Linking Open Data cloud diagram 2017, by Andrejs Abele, John P. McCrae, Paul Buitelaar, Anja Jentzsch and Richard Cyganiak. http://lod-cloud.net/"

Knowledge representation model

RDF graphs: facts (data) describing entities

Knowledge representation model dbo:Expression owl:subClassOf **RDF graphs**: facts (data) describing owl:subClassOf entities dbo:artWork dbo:Book **OWL Ontology**: concepts, properties, owl:subClassOf axioms/constraints of the domain dbo:Painting dbo:Museum rdf:type rdf:type Ontology Applications Facts :realizedBy :contains Web search, conversational agents, dbr:Louvre Paris dbr: Léonard de Vinci dbr:Joconde foaf:name recommendation, transparency, etc. owl:sameAs :contains :hasName dbr:Vénus de Milo Leonardo da Vinci wikidata:Q762 Musée du Louvre Enriching knowledge graphs Guaranteeing the validity of data and Google Bloomberg UniProt knowledge 2012 2007.

Challenges

KNOWLEDGE GRAPHS: SOME KEY PROBLEMS

KG Creation

Information extraction from web pages (DBpedia, Yago), collaborative (Wikidata), ...

KG Enrichment and Expansion

Link prediction, data fusion, data/knowledge linking, ...

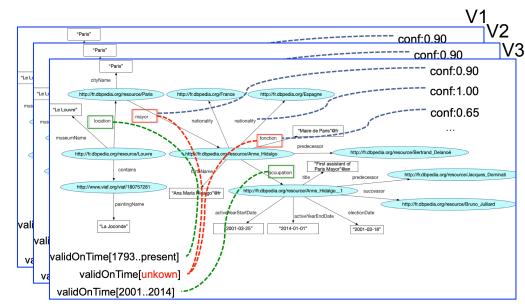
KNOWLEDGE GRAPHS: SOME KEY PROBLEMS

KG Creation

Information extraction from web pages (DBpedia, Yago), collaborative (Wikidata), ...

KG Enrichment and Expansion

Link prediction, data fusion, data/knowledge linking, ...


KG Validity

- Dealing with errors and ambiguities
- Fact validity
- Timeliness: truth of statements often changes with time:
 - E.g., Currently, who is the US president?

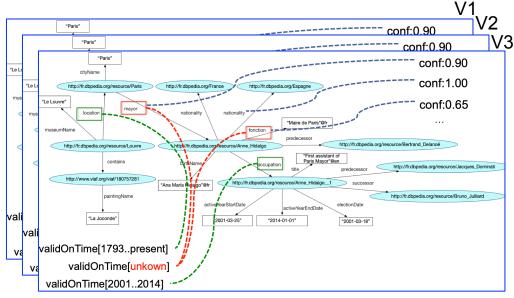
KGS – WHY TIME MATTERS?

Need to capture and reason on temporal information

- KG content cannot be assumed to be static, because many facts change over time
- Ignoring such temporal information may lead to ambiguity and misunderstanding

KGS – WHY TIME MATTERS?

Need to capture and reason on temporal information


- KG content cannot be assumed to be static, because many facts change over time
- Ignoring such temporal information may lead to ambiguity and misunderstanding

Time period during which a fact is valid: validity time.

- f1: <#Obama presidentOf US> is true in the temporal context [2008-2016]
- f2: <#Trump presidentOf US> is true in the temporal context [2017-2021]

Important for :

- Query answering,
- Consistency checking,
- Knowledge discovery, ...

TWO MAIN PROBLEMS

 (A) How can we generate temporal meta-facts using only the facts and the structure of the KGs?

[Malaverri et al. 2020]

• (B) How can we assess the temporal validity of facts ?

[Soulard et al. 2024]

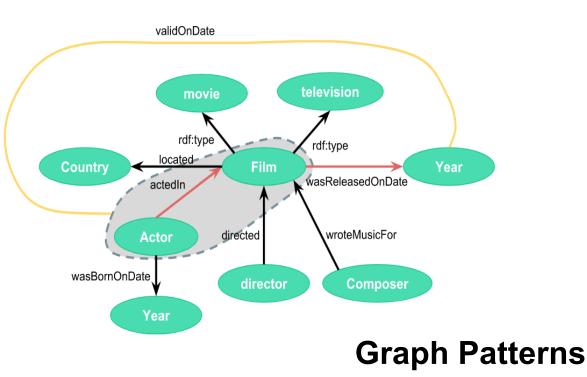
(A) TEMPORAL META-FACT EXTRACTION - PROPOSED APPROACH

[Malaverri et al. 2020]

How can we generate temporal meta-facts using only the facts and the structure of the KGs?

Our approach

- 1. Generate seed meta-facts
- 2. Use the KG structure to propagate temporal meta-facts
- 3. Exploit these temporal meta-facts to asses facts veracity.

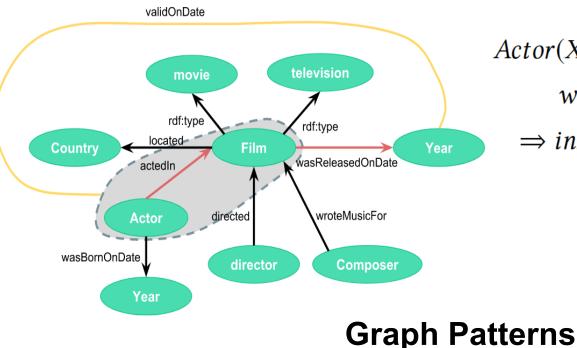

(A) TEMPORAL META-FACT GENERATION - PROPOSED APPROACH

Problem

[Malaverri et al. 2020]

How can we capture fact validity time using only the facts and the structure of the KGs?

Approach – Seed meta-fact generation (step 1)


(A) TEMPORAL META-FACT GENERATION - PROPOSED APPROACH

Problem

[Malaverri et al. 2020]

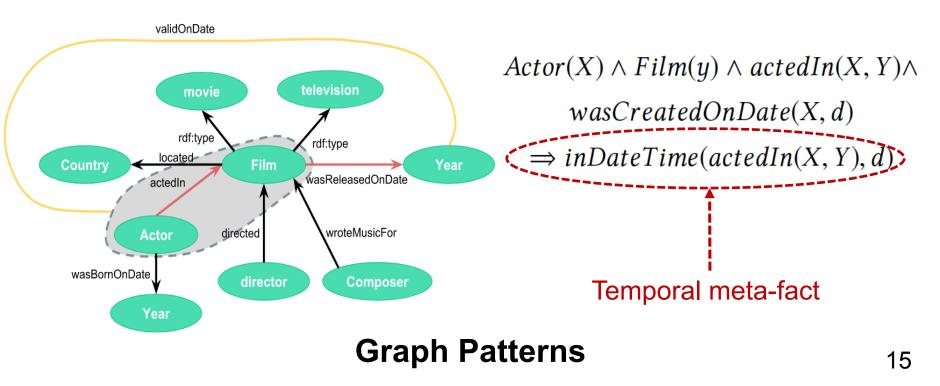
How can we capture fact validity time using only the facts and the structure of the KGs?

Approach – Seed meta-fact generation (step 1)

 $Actor(X) \wedge Film(y) \wedge actedIn(X, Y) \wedge$

wasCreatedOnDate(X, d)

 \Rightarrow inDateTime(actedIn(X, Y), d)


(A) TEMPORAL META-FACT GENERATION - PROPOSED APPROACH

Problem

[Malaverri et al. 2020]

How can we capture fact validity time using only the facts and the structure of the KGs?

Approach – Seed meta-fact generation (step 1)

Algorithm: Query generation

• For each knowledge pattern, in the form of:

 $Actor(X) \land Film(y) \land actedIn(X, Y) \land wasCreatedOnDate(X, d)$

 \Rightarrow inDateTime(actedIn(X, Y), d)

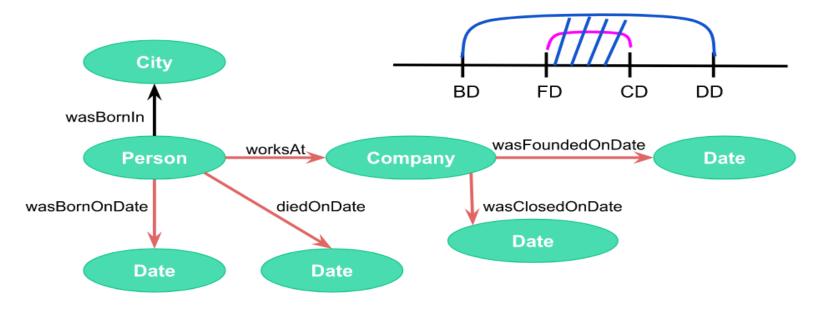
Algorithm: Query generation

• For each knowledge pattern, in the form of:

 $Actor(X) \wedge Film(y) \wedge actedIn(X, Y) \wedge wasCreatedOnDate(X, d)$

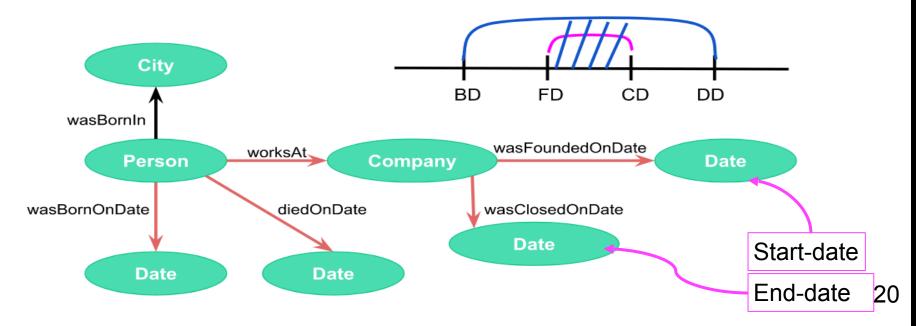
 \Rightarrow inDateTime(actedIn(X, Y), d)

Generate a SPARQL query (graph pattern = rule premise)


```
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX yago: <http://yago-knowledge.org/resource/>
SELECT distinct ?a ?f ?d WHERE {
    ?a yago:actedIn ?f.
    ?f yago:wasCreatedOnDate ?d.
}
```

Algorithm: Meta-fact generation

 On the set of facts obtained from SPARQL queries, generate the set of temporal meta-facts


Algorithm: Meta-fact generation

- On the set of facts obtained from SPARQL queries, generate the set of temporal meta-facts
- For interval graph patterns: compute an intersection between the temporal intervals associated to the subject and the object of a fact.

Algorithm: Meta-fact generation

- On the set of facts obtained from SPARQL queries, generate the set of temporal meta-facts
- For interval graph patterns: compute an intersection between the temporal intervals associated to the subject and the object of a fact.

TEMPORAL META-FACT EXPANSION

2. TEMPORAL META-FACT EXPANSION

 Use a set of Horn rules generated by a rule mining tool (e.g. AMIE) to propagate existing temporal meta-facts

 $hasChild(x, c) \land isMarriedTo(x, y) \implies hasChild(y, c)$

2. TEMPORAL META-FACT EXPANSION

 Use a set of Horn rules generated by a rule mining tool (e.g. AMIE) to propagate existing temporal meta-facts

 $hasChild(x, c) \land isMarriedTo(x, y) \implies hasChild(y, c)$

- Step 1: Rule selection and instantiation
 - Keep only rule with confidence > threshold theta
 - Select those premises contain a predicate in the set of seed meta-facts
 - Rule instantiation on a set of facts and seed meta-facts (generated or already existing in the KG)

2. TEMPORAL META-FACT EXPANSION

 Use a set of Horn rules generated by a rule mining tool (e.g. AMIE) to propagate existing temporal meta-facts

 $hasChild(x, c) \land isMarriedTo(x, y) \implies hasChild(y, c)$

- Step 2: Temporal meta-fact propagation
 - <u>Case 1</u>: only one meta-fact in the premise, then propagate the date attached to the conclusion
 - <u>Case 2</u>: if several meta-facts in the premise, then apply temporal combination constraints

2. TEMPORAL COMBINATION CONSTRAINTS

Based on Allen's calculus

	Time relations	Inferred time
1	during(TS, TI)	TI
2	before(TI_1 , TI_2)	[start(TI_1) end(TI_2)]
3	during(TI_1 , TI_2)	TI_2
4	overlaps(TI $_1$, TI $_2$)	[min(start(TI_1), start(TI_2)) max(end(TI_1), end(TI_2))]
5	meet(TI_1 , TI_2)	[min(start(TI_1), start(TI_2)) max(end(TI_1), end(TI_2))]
6	before(TS ₁ , TS ₂) and before(TS ₂ , TI)	$[TS_1 \dots end(TI)]$
7	before(TI, TS_1) and before(TS_1 , TS_2)	[start(TI) TS ₂]
8	during(TS ₁ , TI) and before(TI, TS ₂)	[start(TI) TS ₂]
9	before(TI_1 , TI_2) and before(TI_2 , TI_3)	[start(TI_1) end(TI_3)]
10	during(TI_1 , TI_2) and before(TI_2 , TI_3)	[start(TI_1) end(TI_3)]
11	overlaps(TI_1 , TI_2) and before(TI_2 , TI_3)	[min(start(TI_1), start(TI_2)) end(TI_3)]
12	overlaps(TI_1 , TI_2) and during(TI_2 , TI_3)	TI3

EXPERIMENTS

1. SEED META-FACT GENERATION: EXPERIMENTS ON YAGO

- Yago3: contains information extracted from Wikipedia infoboxes, WordNet, and GeoNames,
- >10 million entities (persons, cities, organizations),
- > 120 million facts about these entities
- Attaches temporal and spatial dimensions to some facts and entities.

actedIn wroteMusicFor created	
created	T
	T
participatedIn	Ī
graduatedFrom	T
isMarriedTo	T
hasAcademicAdvisor	T
isLeaderOf	T
playsFor	T
isAffiliatedTo	T
worksAt	T
hasChild	T
directed	T
edited	T

1. SEED META-FACT GENERATION: EXPERIMENTS ON YAGO

Predicates	#YAGO MF	# Generated MF	
actedIn	36	305247	x 8479
wroteMusicFor	165	59130	
created	1943	444853	x 228
participatedIn	419	2655	x 6
graduatedFrom	3561	142137	
isMarriedTo	10168	53039	
hasAcademicAdvisor	95	9548	x 100
isLeaderOf	187	18471	
playsFor	34000	783254	
isAffiliatedTo	5290	783254	
worksAt	408	27611	x 67
hasChild	-	38236]
directed	-	90961	
edited	_	20008]

Quantitative results of seed meta-fact generation

- DBpedia as a KG to be enriched with temporal meta-facts
- As seed meta-facts:
 - Yago meta-facts: datasets A
 - Seed meta-facts: dataset B
- Use of AMIE horn rules
- Wikidata as a ground truth (qualifiers)
 - Use of Wikidata endpoint *

Predicates	# of Records
hasChild	100000
directed	18726
created	100000
isMarriedTo	32275
isAffiliatedTo*	88087
worksAt	90000

* https://query.wikidata.org/

Quantitive results on dataset A (Yago meta-facts)

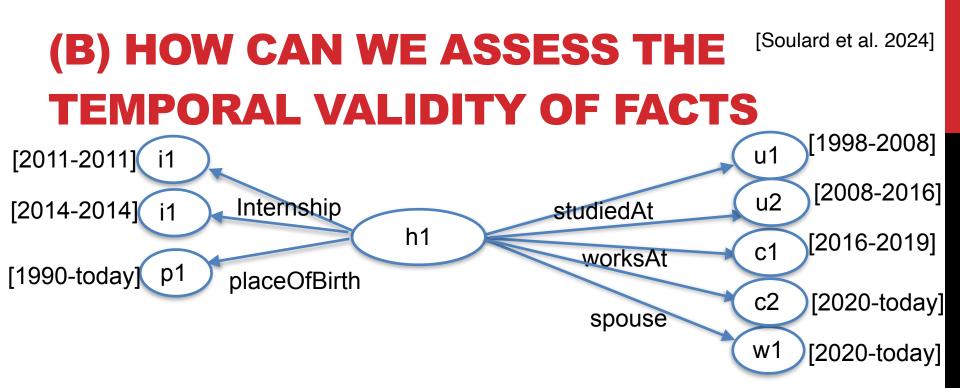
Predicates	# Original Meta-facts	# Meta-facts obtained	Rules applied	PCA Confidence	Head Coverage
h Ohild	0	2156	?e <haschild>?b,?e<ismarriedto>?a =>?a<haschild>?b</haschild></ismarriedto></haschild>	0.539998107	0.380672718
hasChild			?f <haschild>?b?,a<ismarriedto>?f =>?a<haschild>?b</haschild></ismarriedto></haschild>	0.540100369	0.380672718
directed	0	1932	?a <created>?b=>?a<directed>?b</directed></created>	0.301768006	0.233104873
isMarriedTo	sMarriedTo 10168 8290 ?b≺isMarriedTo>		?b <ismarriedto>?a=>?a<ismarriedto>?b</ismarriedto></ismarriedto>	0.999915811	0.999831636
isAffiliatedTo	5290	34000	?a <playsfor>?b=>?a<isaffiliatedto>?b</isaffiliatedto></playsfor>	0.999991338	0.824862929
playsFor	34000	5290	?a <isaffiliatedto>?b=>?a<playsfor>?b</playsfor></isaffiliatedto>	0.967279918	0.999991338
worksAt	408	177	?e <graduatedfrom>?b, ?e<hasacademicadvisor>?a =>?a<worksat>?b</worksat></hasacademicadvisor></graduatedfrom>	0.400990099	0.056577416

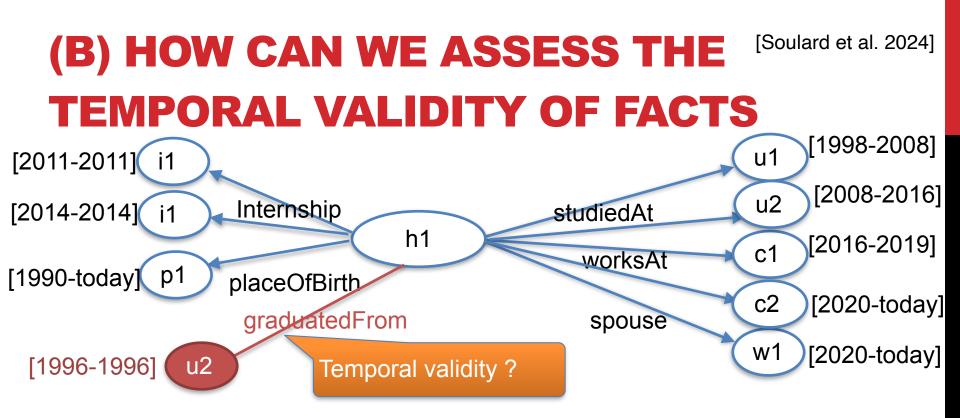
Quantitive results on dataset B (Seed meta-facts, step1)

Predicates	# Original Meta-facts	# Meta-facts obtained	Rules applied	PCA Confidence	Head Coverage
baaChild	38236	40004	?e <haschild>?b,?e<ismarriedto>?a =>?a<haschild>?b</haschild></ismarriedto></haschild>	0.539998107	0.380672718
hasChild	36230	13231	?f <haschild>?b?,a<ismarriedto>?f =>?a<haschild>?b</haschild></ismarriedto></haschild>	0.540100369	0.380672718
directed	ected 90961 426187 ?a <created>?b=>?a<directed>?b</directed></created>		?a <created>?b=>?a<directed>?b</directed></created>	0.301768006	0.233104873
created	444853	72620	?a <directed>?b=>?a<created>?b</created></directed>	0.392707051	0.035430598
	edTo 53039	62416	?b <ismarriedto>?a=>?a<ismarriedto>?b</ismarriedto></ismarriedto>	0.999915811	0.999831636
isMarriedTo			?a <haschild>?f,?b<haschild>?f =>?a<ismarriedto>?b</ismarriedto></haschild></haschild>	0.424990052	0.134859837
isAffiliatedTo	1204540	777039	?a <playsfor>?b=>?a<isaffiliatedto>?b</isaffiliatedto></playsfor>	0.999991338	0.824862929
worksAt	27611	5520	?e <graduatedfrom>?b, ?e<hasacademicadvisor>?a =>?a<worksat>?b</worksat></hasacademicadvisor></graduatedfrom>	0.400990099	0.056577416

Qualitative results: Considered timestamp meta-facts and full date

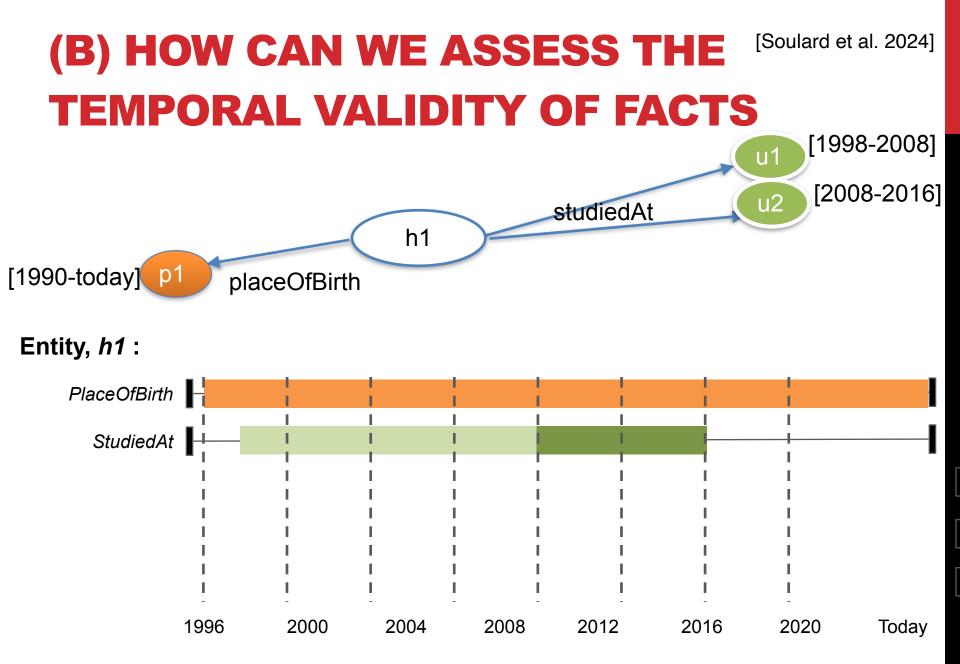
	Dataset A			Dataset B			
		Р	R	F	Р	R	F
	0.1	0.89	0.89	0.89	0.67	0.67	0.67
	0.2	0.89	0.89	0.89	0.67	0.67	0.67
e	0.3	0.89	0.89	0.89	0.67	0.67	0.67
enc	0.4	0.89	0.89	0.89	0.67	0.67	0.67
fide	0.5	0.89	0.89	0.89	0.67	0.67	0.67
Confidence	0.6	0.89	0.89	0.89	0.67	0.66	0.66
0	0.7	0.99	0.62	0.76	0.0008	0.0001	0.0002
	0.8	0.99	0.62	0.76	0.0008	0.0001	0.0002
	0.9	0.99	0.62	0.76	0.0008	0.0001	0.0002

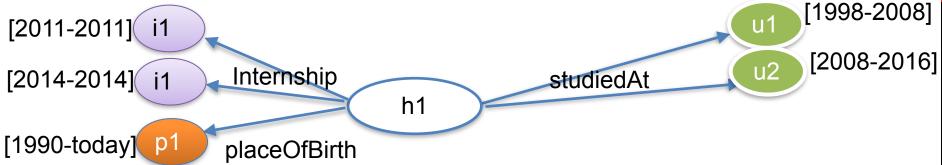

- Dataset A gets better results: better accuracy of seed meta-facts
- Dataset B reaches 0.67 of F-measure


CONCLUSION

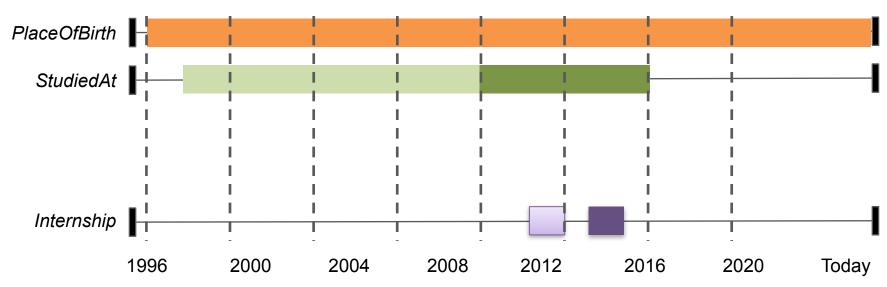
 An approach for seed temporal meta-fact generation for time-sensitive predicates

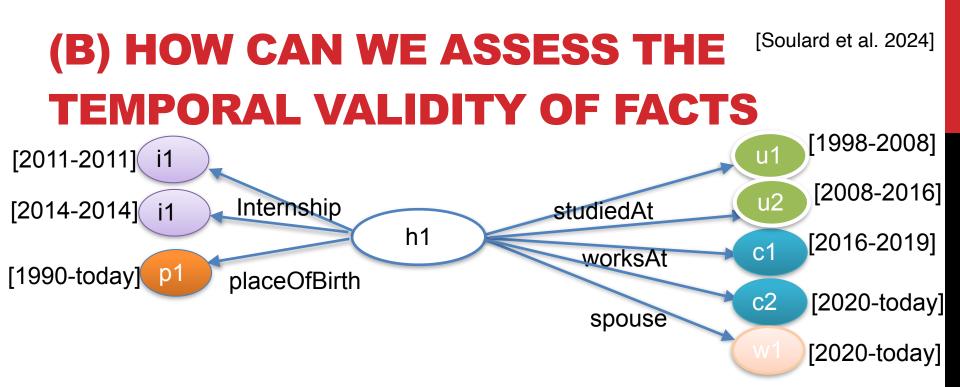
A rule-based approach for temporal meta-fact propagation


A first quantitative and qualitative evaluation

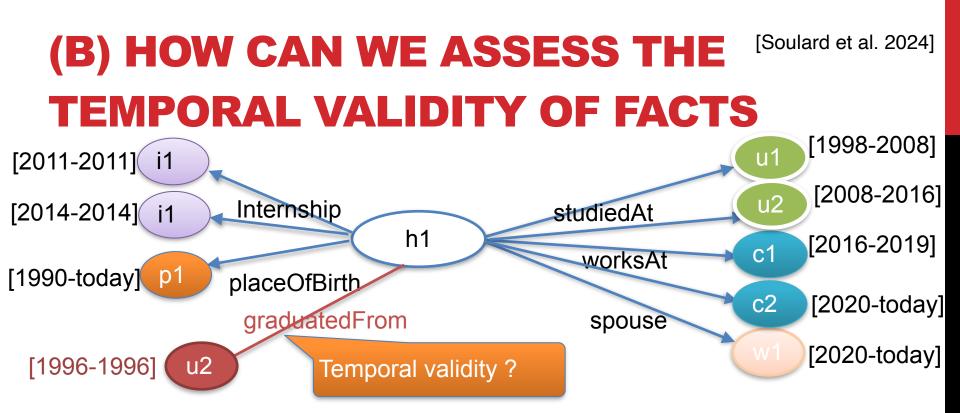


(B) HOW CAN WE ASSESS THE [Soulard et al. 2024] TEMPORAL VALIDITY OF FACTS


Entity, *h1* :


(B) HOW CAN WE ASSESS THE [Soulard et al. 2024] TEMPORAL VALIDITY OF FACTS

Entity, *h1* :



[Soulard et al. 2024] **(B) HOW CAN WE ASSESS THE TEMPORAL VALIDITY OF FACTS** [1998-2008] **u1** [2011-2011] i1 [2008-2016] u2 Internship [2014-2014] i1 studiedAt h1 [2016-2019] c1 worksAt [1990-today] [1 placeOfBirth c2 [2020-today] spouse Entity, *h1* : [2020-today] PlaceOfBirth L. I. L StudiedAt WorksAt Spouse Internship 1996 2000 2004 2008 2012 2016 2020 Today

This graph represents several implicit temporal constraints

placeOfBirth [before] studiedIn worksAt [after] Internship internship [overlaps] studiedIn

This graph represents several implicit temporal constraints

placeOfBirth [before] studiedIn

worksAt [after] Internship

internship [overlaps] studiedIn

(B) HOW CAN WE ASSESS THE [Soulard et al. 2024] TEMPORAL VALIDITY OF FACTS

Problem:

- Let f be a fact in a temporal knowledge graph KG in the form of a quadruplet (s, p, o, [sd, ed]) with [sd, ed] an intervalle of time representing the validity time of f.
- *f* is valid in *KG* if the time intervalle is temporally consistant with respect to the temporal constraints fulfilled in *KG*.

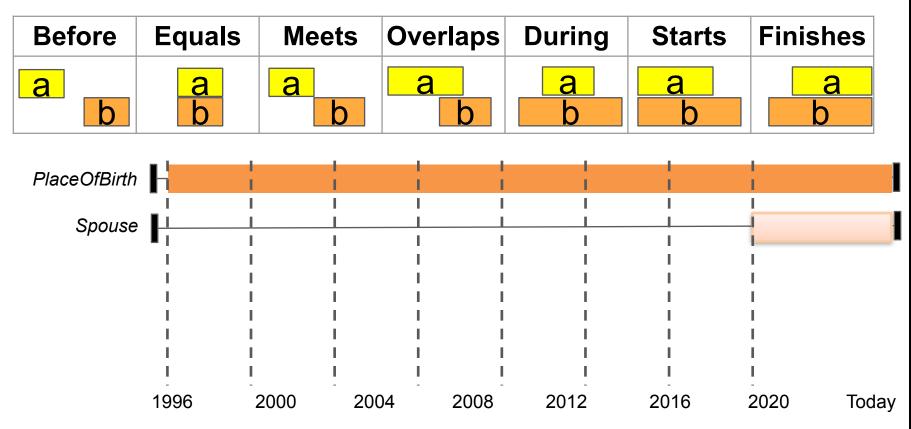
(B) HOW CAN WE ASSESS THE [Soulard et al. 2024] TEMPORAL VALIDITY OF FACTS

Problem:

- Let f be a fact in a temporal knowledge graph KG in the form of a quadruplet (s, p, o, [sd, ed]) with [sd, ed] an intervalle of time representing the validity time of f.
- f is valid in KG if the time intervalle is temporally consistant with respect to the temporal constraints fulfilled in KG.

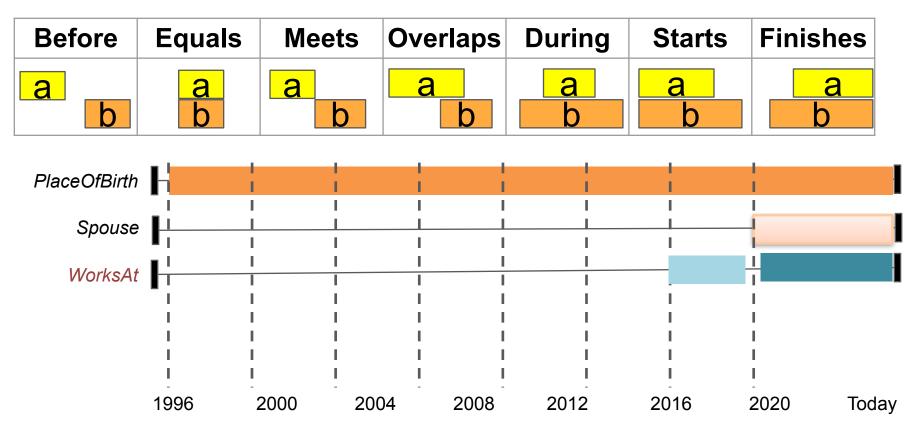
Our approach

- 1. Temporal constraint discovery
- 2. Temporal validity checking of facts with respect to the discovered temporal constraints

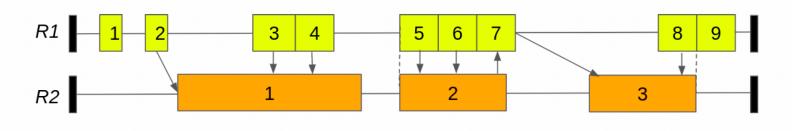

B.1. TEMPORAL CONSTRAINT DISCOVERY

Allen's Algebra temporal relations between simple intervals

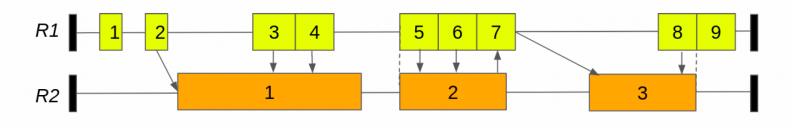
Before	Equals	Meets	Overlaps	During	Starts	Finishes
a	a	a	a	a	a	<mark>a</mark>
b	b	b	b	b	b	b


B.1. TEMPORAL CONSTRAINT DISCOVERY

Allen's Algebra temporal relations between simple intervals



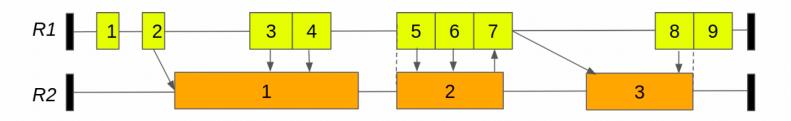
B.1. TEMPORAL CONSTRAINT DISCOVERY


 Allen's Algebra temporal relations between simple intervals but not for sequences of intervals

 New algorithm for sequence comparison that deals with intra and inter-comparisons in one passe

 New algorithm for sequence comparison that deals with intra and inter-comparisons in one passe

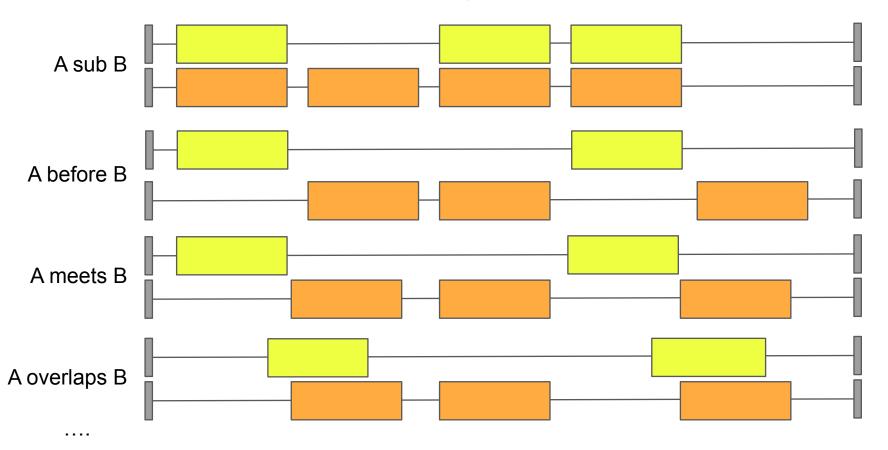
Relation

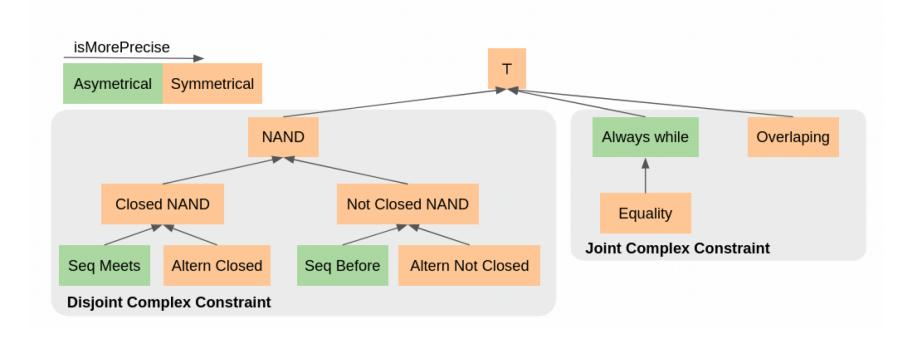

			Before	2	0
		1	Equals	0	0
Relation	$o(S_1.I, S_1.I')$	$o(S_2.I, S_2.I')$	Meets	0	0
Meets	4	0	Overlaps	0	1
			During	3	0
Intra-sequences $M_{\leq 1}$			Starts	1	0
comparis	sons ^{IVI}		Finishes	1	0

Inter-sequences comparisons

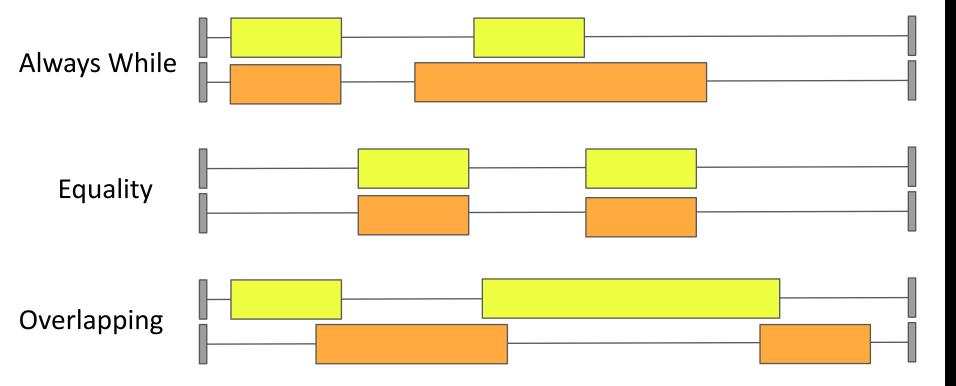
 $o(S_1.I, S_2.I) \mid o(S_2.I, S_1.I)$

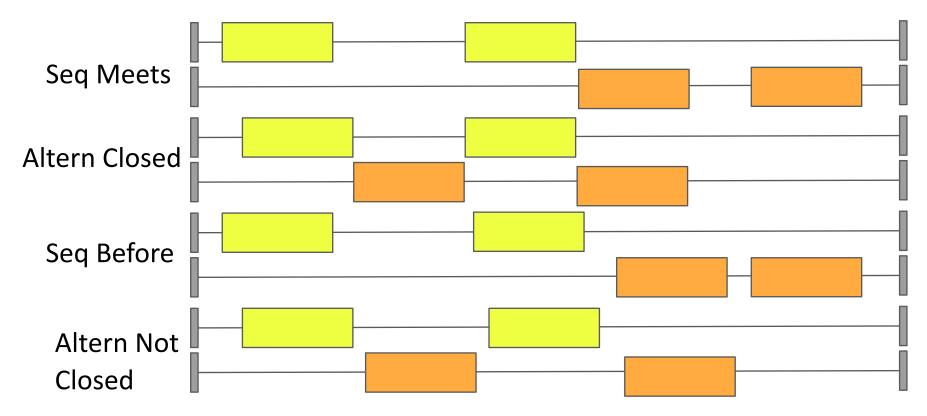
 $M_{
ightarrow}$


 New algorithm for sequence comparison that deals with intra and inter-comparisons in one passe


Relevant Inter-sequence comparisons

$$\begin{array}{l} (I \cap_t I' \neq \emptyset) \\ \lor \ (I.s < I'.e) \\ \land (\nexists I'' \in S \setminus \{I\}, (I''.s \geq I.e \land I''.s \leq I'.s) \\ \land (\nexists I'' \in S' \setminus \{I'\}, (I''.e \leq I'.e \land I''.e \geq I.s) \\ \lor \ (I.s > I'.e) \\ \land (\nexists I'' \in S \setminus \{I\}, (I''.e \geq I'.s \land I''.e \leq I.s) \\ \land (\nexists I'' \in S' \setminus \{I\}, (I''.s \leq I.s \land I''.s \geq I'.e), \end{array}$$


• We obtain simple Temporal Constraint, only composed of one type of relations (before, meets, overlaps, ...)


• We can then combine these simple constraints to represent complex ones composed of multiple types of relations or lack of.

• We can then combine these simple constraints to represent complex ones composed of multiple types of relations or lack of.

• We can then combine these simple constraints to represent complex ones composed of multiple types of relations or lack of.

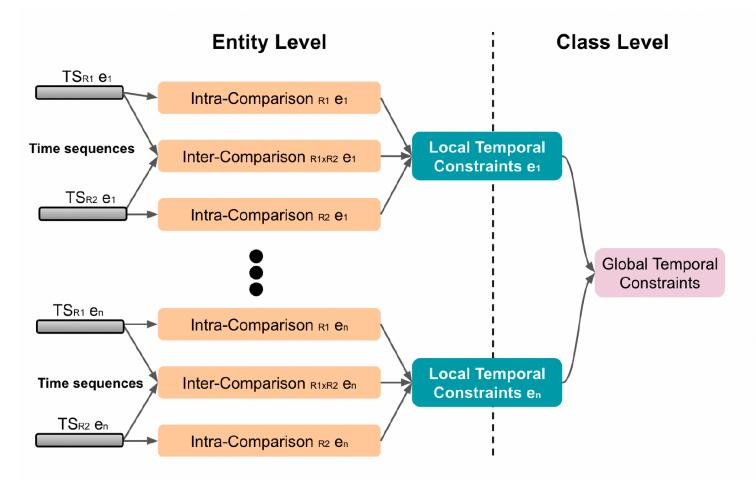
B.1. TEMPORAL CONSTRAINT DISCOVERY - GENERALIZATION TO CLASS LEVEL

For the entity *h1*, we have discovered : Seq.Internship Always While Seq.StudiedAt

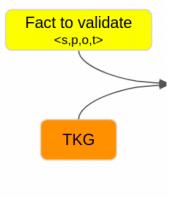
But is the case for other (~all) entities of the Class Human?

Generalisation Threshold

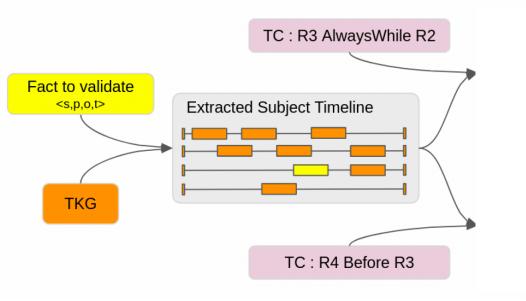
Is the constraint general enough to be used on a minimum of entities.

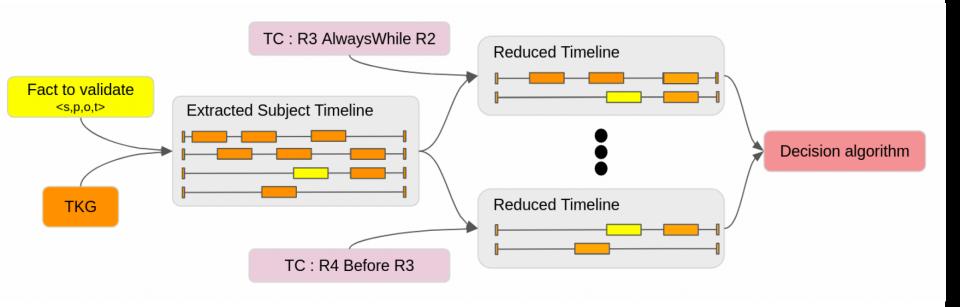

$$GeneRate(TC) = \frac{|E_{P,P'}|}{|E|}$$

Error Threshold


Is the constraint shared among the entities described by both relations.

$$ErrorRate(TC) = \frac{|X_{P,P'}|}{|E_{P,P'}|}$$


Constraint Discovery Framework for two properties R1 and R2


B.2. TEMPORAL FACT VALIDATION USING TEMPORAL CONSTRAINTS

- Constraint based Temporal Fact Validation framework -

- Constraint based Temporal Fact Validation framework -

- Constraint based Temporal Fact Validation framework -

[Soulard et al. 2024] B.2. TEMPORAL FACT VALIDATION USING TEMPORAL CONSTRAINTS - DECISION ALGORITHM

Symbolic approach - voting-based strategy : we check the temporal validity of a fact w.r.t all its relevant temporal constraints.

Using a simple voting system w.r.t a given threshold

[Soulard et al. 2024] B.2. TEMPORAL FACT VALIDATION USING TEMPORAL CONSTRAINTS - DECISION ALGORITHM

Symbolic approach - voting-based strategy : we check the temporal validity of a fact w.r.t all its relevant temporal constraints.

Using a simple voting system w.r.t a given threshold

Neuro-Symbolic combination strategy: we check the temporal validity of a fact w.r.t all available temporal constraints

- Then, for each temporal constraint tc, we associate a number to represent all possible behaviors (0, 1 and multiple values to represent the various possible cases)
- This results in a matrix n*m, where n is the size of the set of temporal constraints and m is the number of facts to validate, and a ground truth vector of dimension n that can be used to train and test the machine learning model (decision tree)

Datasets extracted from **Wikidata** (dec. 2023) representing all facts related to entities of different types

Class	# Entities	# Quadruplets
Country (Q6256)	205	183 249
Musical Group (Q215380)	55 507	131 476
Politician (Q82955)	658 445	2 085 232

Constraint discovery: Hyperparameters gen & err results for generalization step

Class	gen	err	Acc.	Cov.	R.T
Country	2	10	-	-	-
	2	5	88.6	16	8h 50m
	5	10	87.9	17.2	4h 30m
	5	5	88.5	14.4	2h 54m
Musical Group	2	10	64.6	38.2	6m 6s
_	2	5	64.6	38.2	5m 54s
	5	10	64.2	37.5	5m 51s
	5	5	64.2	37.5	5m 51s
Politician	2	10	63.4	51.9	1h 35m
	2	5	62.1	49.9	1h 32m
	5	10	63.5	48.9	1h 34m
	5	5	62.1	46.9	1h 32m

Decision algorithms results

Class	Deci. Type	Acc.	Cov.	R.T	Size	
Country	Symbolic	79.5	9.4	2m 30s	183K quads	
-	Neuro-Symb.	80.4	9.4	52m		
Musical Group	Symb.	64.0	37.5	2m 50s	131K quads	
-	Neuro-Symb.	64.3	37.5	5m 50s		
Politician	Symb.	61.6	44.0	44m	2M quads	
	Neuro-Symb.	62.3	44.0	1h 30m		

CONCLUSION

- Good accuracy but limited coverage
- Limitations of the proposed approach :
 - Case of no temporal constraints can be applied for a fact
 - If a relation is **temporally independant**
 - If multiple values are defined for the same relation at the same time (e.g. studying in several universities at the same time)

FUTURE WORK

• Experiments :

- reduce the number of features that highly impact the performance of the neurosymbolic approach, by discarding temporal constraints that are less important.
- evaluate whether the set of temporal constraints discovered in one graph can be transferred and used to validate or refute temporal facts on several graphs with high accuracy and coverage.
- test the transferability of these temporal constraints on several other temporal KGs, such as YAGO
- Methodology : Use of knowledge graph embeddings by introducing temporal constraints in a knowledge graph embedding Loss.

REFERENCES

- [Soulard et al. 2024] Thibaut Soulard, Joe Raad and Fatiha Saïs. Validation Temporelle Explicable de Faits par la Découverte de Contraintes Temporelles Complexes dans les Graphes de Connaissances. Ingénierie des connaissances (IC@PFIA 2024)
- [Malaverri et al.] Fatiha Saïs, Joana E. Gonzales Malaverri, Gianluca Quercini: MOMENT: temporal meta-fact generation and propagation in knowledge graphs. SAC 2020: 2039-2048
- [Gutierrez et al] Claudio Gutierrez, Carlos Hurtado and Alejandro Vaisman. Introducing Time into RDF. IEEE Transactions on Knowledge and Data Engineering. Vol. 19, Number. 2. 2007
- [Zhang et al] Fu Zhang, Ke Wang, Zhiyin Li and Jingwei Cheng. Temporal Data Representation and Querying Based on RDF. IEEE Access Journal
- [Foffart et al] Johannes Hoffart, Fabian M. Suchanek, Klaus Berberich, Gerhard Weikum. YAGO2: A spatially and temporally enhanced knowledge base from Wikipedia. Artificial Intelligence, 2013
- [RDF*] <u>https://w3c.github.io/rdf-star/cg-spec/editors_draft.html</u>
- [Barbieri et al] D.F Barbieri, D. Braga, S. Ceri, E. Della Valle and M. Grossniklaus. C-SPARQL: A Continuous Query Language for RDF Data Streams. International Journal of Semantic Computing. Vol 04, Numbrer 1, 2010.

Explainable Temporal Fact Validation Through Temporal Constraints Discovery In Knowledge Graphs

FATIHA SAÏS

Joint Work With: JOANA E. GONZALES MALAVERRI, THIBAUT SOULARD AND JOE RAAD

LISN, CNRS & Université Paris Saclay

Séminaire SESAME - INRAE - 10/06/2024

