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Ontology matching
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Context

Ontology heterogeneity

Ontology matching

Ontology differences in terms of the terminology,
coverage, granularity modelling strategies, or still

level of generality

Task of generating a set of correspondences
between different ontologies

2/39



Context

02:hasDecision .
oy1:Paper 02:Paper 02:Decision

02:Acceptance

T
|
|
I
|
I
I

o1:AcceptedPaper |

rdf:type ‘
I
I
I
|
|
I
I

02:hasDecision
oz:paperl

o1:Paper = o2:Paper

3/39



Context

02:hasDecision .
oy1:Paper 02:Paper 02:Decision

02:Acceptance

o1:AcceptedPaper

T
I
I
I
|
I
I
rdf:type :
I
I
I
I
I
I

! 02:hasDecision
oz:paperl

o1:Paper = o2:Paper

01 :AcceptedPaper = 02:Paper M Joz:hasDecision.ox:Acceptance

3/39



Ontology matching process

o1 P
r —@®
02 r
Adapted from [Euzenat and Shvaiko, 2013]
A is a set of correspondences {ci, ..., cn}, where ¢; is a tuple (e1, 2, r)

e1 and e; are the members of the correspondence.
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Ontology matching process

A is a set of correspondences {ci, ..., cn}, where ¢; is a tuple (e1, e2,r)
e1 and e> are the members of the correspondence:

e simple correspondence (s:s): e; and e» are simple expressions
(o1:Paper, 0 :Paper,=)

e complex correspondence (s:c, c:s, c:c): e; or/and ez is a complex expression
(01:AcceptedPaper, 3 o02:Paper I 02:hasDecision.02:Acceptance,E)

e ris a relation, e.g., (=, 3, C, 1)
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Classification of matching approaches
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Jérdme Euzenat, Pavel Shvaiko: Ontology Matching, Second Edition. Springer 2013, ISBN 978-3-642-38720-3,
pp. I-XVII, 1-511
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Representation learning: embeddings, language models
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Representation learning: embeddings, language models

Exploring the natural language layer of ontologies in a better way.
Textual descriptions play more than ever an increasingly important role in OM.

Embeddings and language models: both aim at representing text in a numerical way

e different purposes

e different stages of the NLP pipeline
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Embeddings

A way to transform words/phrases into numerical vectors

Capture semantic and contextual information about the text

Primarily focused on capturing the meaning of singular words or phrases

Used as feature vectors in downstream NLP tasks

Male-Female

walked

walking

swimming

Verb tense
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Predict the next word in a sentence based on the context extracted from the

previous words

Estimate the probability of one or more words given the surrounding words
Generate coherent and contextually relevant text, pre-trained over a large corpus
of data

Useful in more sophisticated tasks not only requiring contextual semantic
meaning but also text generation

cat 0.87
I saw a Model tonight 012 []
song 013 []
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Representation learning
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Embeddings in OM
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Embeddings in OM

A wave of representation learning systems has appeared in the last few years.

e Word embeddings (Word2Vec, Glove, fastText)

e Sentence embeddings (BERT, SBERT)

e RDF embeddings (RDF2Vec)

e OWL constraints (OWL2Vec)

e Graph embeddings (GNN, GCN, GAT, RGCN)

e Translational embeddings (TransE, TransR, RotatE)
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Word2Vec

e Word2Vec [Mikolov et al., 2013] was one of the first embedding methods used in
ontology matching.

e Best used when concepts are labeled with only one word.

e It is commonly pre-trained with data outside the ontology and performs better if
the trained dataset is in the same topic as the ontology being used.
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Word2Vec

Word2Vec embeddings are trained by reading a text corpus with a sliding window and
using words and context to create a training dataset.

Example (skip-gram training): The current word (green) is used to predict the context
words (yellow) by increasing their similarity while decreasing the similarity of random
words.

Window .
Size Text Skip-grams
wide, the
[ The wide road shimmered ] in the hot sun. wide, road
wide, shimmered
shimmered, wide
2 shimmered, road

The [ wide road shimmered in the ] hot sun. : :
shimmered, in

shimmered, the

sun, the

The wide road shimmered in [ the hot sun ]. sun, hot
i

Figure 1: Word2Vec training example. https://www.tensorflow.org/text/tutorials/word2vec
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Word2Vec

In [Zhang et al., 2014] Word2Vec is applied in ontology matching for the first time.

The matcher uses the model for each entity in the source ontology by using the textual
information to retrieve an embedding based on each work in this textual information.

The embeddings are used to compare the similarity between entities using metrics
such as cosine similarity.

The pairs with higher similarity are selected as a correspondence.

TN S
\ Paper ——> Word2Vec —){ E;
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/ — ey
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BERT: Bidirectional Encoder Representations from Transformers

Pre-trained transformer encoder model used for language understanding tasks
[Devlin et al., 2018].

BERT will read a sequence of words in both directions, from left to right and right to
left. This makes it possible to grasp more complex phrases and turn much closer to
human language.

MASK]

[MASK]
oo ) (o)) () ) ) ) ) )
Token
Embeddings fcLs) my cute he play (sEP)

+ -+ + + + + + + +
Sentence
Embedding
+ + + + + + + + + +
[&]

Transformer
Positional
Embedding

15/30



BERT is used as a binary classifier to decide whether two entities are the same using
their labels as input [He et al., 2022].
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RDF2Vec

Embedding method used to generate vector representations of RDF graphs: RDF2vec
creates a numeric vector for each node in an RDF graph.

First, a random walk strategy to create sequences of RDF nodes is applied, which are

then used as input for the word2vec algorithm.
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http://rdf2vec.org/

RDF2Vec is used to generate embeddings of an external knowledge graph
(WeblIsALOD) [Portisch et al., 2020]

Embeddings are then retrieved from the WeblsALOD embeddings at runtime using the

concept labels.

The cosine similarity between entity pair embeddings is computed to find the
correspondences between source and target ontologies similar as applied in Word2Vec

approaches.
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OWL2Vec

OWL2Vec [Chen et al., 2020] is an extension to RDF2Vec to generate embeddings of
OWL ontologies.

It has a set of conversion rules to transform an OWL ontology into an RDF graph and
apply random walk strategies to generate the sentences used to train the model.

This model is used in the LogMapML [Chen et al., 2021] matcher.
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Graph embeddings

Graph Neural Networks (GNN) ([Wu et al., 2020] for a survey) are networks capable
of generating representations of graph data.

This type of model fits well in the OM since it can be used to generate embeddings
that contain contextual information from each node.

This model is often combined with language models to generate the initial embeddings
that are then contextualized by the GNN.

aqy

concat/avg /7
hy

Figure 2: Velickovi¢, Petar, et al. "Graph attention networks." arXiv preprint arXiv:1710.10903
(2017).
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Uses a graph attention approach to compute higher-level representation of a class

together with its surrounding terms [Efeoglu, 2023].
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Embeddings in OM: a review

Works can be grouped based on how the information is used to create the embedding
representation [Sousa et al., 2022]:
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Embeddings in OM

Lexical Unit Segmentation groups the different types of tokenization used in
processing the textual information related to ontology entities to generate their
respective embeddings:

e Entity-level segmentation considers the whole sentence as a single entity without
requiring aggregation steps to compute the final embeddings. Ex.
['AcceptedPaper’]

e Word-level segmentation considers the individual words present in the sentence
as elements that are aggregated to generate the final entity embedding. Ex.
['Accepted’, 'Paper’].

o Subword-level segmentation considers subword splits that are also aggregated to
generate the final entity embedding. This improves entity generalization as it can
generate embeddings for words not present in the training corpus if the subwords
are present. Ex. ['Accep’, 'ted’, 'Pa’, 'per’].

e Character-level segmentation has one embedding for each character model
alphabet resulting in a reduced vocabulary size and a higher generalization
compared to the other types of segmentation since embedding for any word can

be generated by aggregating the embedings of the characters. Ex. ['A’, 'c’, 'c’,

1

e, p!, e P A, p e L
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Embeddings in OM

Training category groups the different types of data usage related to the system
training.

e Reference are those approaches that depend on reference alignments to be
trained. Reference alignments are the gold standard set of alignments between
two ontologies.

e Trained are those approaches that adapt their weights for each new ontology it
sees and some training happens steps before the matching of each pair of
ontologies.

e Pre-train are those systems that are trained before the matching and in a
different dataset than the others being evaluated.
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Embeddings in OM

Information Level category groups the levels of information aggregated in each
embedding generated by the matching approach:

e No Context are those approaches that only use information present in each
entity without considering the nodes near the one being generated. For example,
matches that generate embedding only considering entity labels fall in this
category.

e Context are those approaches that use information present in each entity and also
aggregate information of neighbor entities in any depth without considering the
relation predicate between them. In this category are grouped the approaches that
use labels of the current entity and nearby entities in the embedding generation.

e Relation are those systems that also include the information present in the
relations between entities, for example, considering that two entities are disjoint
or subclasses of each other and inserting that information in the embedding of
the current entity.

e Background Knowledge are those systems that include information not present
in the ontology in the entity embedding generation. For example, fetching data
from Wikipedia and inserting the information found there into the entity’s final
embedding.
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Massive Text Embedding Benchmark (MTEB)
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Where/how we are using embeddings

PropMatch [Sousa et al., 2023a]: generation of alignments between ontology
properties, combining word and sentence embeddings with alignment extension.

Using BERT Models to Automatically Classify Domain Concepts into DOLCE
Top-Level Concepts: A Study of the OAEI Ontologies [Sousa et al., 2023b].

e Extending CANARD (more later).
e Combining BERTInst and Link keys.
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Language models in OM
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L age models

Recent adoption in OM, few papers already adopting them
e Olala: Ontology Matching with Large Language Models
[Hertling and Paulheim, 2023]

e ChatGPT for entity matching [Peeters and Bizer, 2023]: check if two product
descriptions refer to the same product.

e Conversational ontology alignment with [Norouzi et al., 2023]

e Capabilities of large models for biomedical concept linking [Wang et al., 2023]
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OlLala: Ontology Matching with Large Language Models

[Hertling and Paulheim, 2023] is an ontology matching approach applying LLMs in the
similarity computation between a pair of entities.

00 °
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. Matching candidates are extracted from the two input ontologies O1 and O2.

. Those selected entities are presented to the LLM with specific prompts to decide
their correctness.

. High-precision matches are also used to include the simple matches in the final
alignment.

. Filters are applied to ensure alignment requirements such as ensuring a 1:1
mapping.
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The LLM usage in OLala is applied in two different configurations:

e Binary Decisions presents the candidate entities to the LLM and uses the
generated response to decide about their similarity:

"Classify if the following two concepts are the same. First concept: (left) Second
concept: (right)

Answer:". To get the final result, the model response is searched for words like
true/yes for positive and false/no for negative.

Multiple choice decisions more context is provided to the LLM such as giving a
source entity and all possible target entities. Then, the task is to pick the one
that represents the same entity or to generate a default answer.

"The task is ontology matching (find the description that refers to the same
real-world entity). Which of the following descriptions fits best to this
description: (left)? (candidates)

Answer with the corresponding letter or "none" if no description fits. Answer:"
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LLMs: challenges

Need for training data (fine-tuning/reference alignments)
Validation
Open source issues (hidden data training, full access to the model)

Reproducibility
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Open LLM Leaderboard
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Expressive alignments
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Need for complex correspondences

Simple correspondences are not expressive enough
to overcome the different kinds of ontology heterogeneity

Alignments between real-world ontologies contain many
relations uncovered by current systems

Need for more expressiveness in diverse domains and applications
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Need for complex correspondences
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Proposal

e Higher search space for generating complex correspondences

e User needs are neglected in most matching approaches

e Reduce the matching space taking into account user's knowledge needs
— Competency Questions for Alignment
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Competency questions for alignment (CQAs)

Same as competency questions for ontology authoring [Suarez-Figueroa et al., 2012],
but to be answered over two or more ontologies.
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Competency questions for alignment (CQAs)

Same as competency questions for ontology authoring [Suarez-Figueroa et al., 2012],
but to be answered over two or more ontologies.

Can be a NL question or SPARQL queries.

e “What are the accepted papers?”
e SELECT ?x WHERE {?x a o0;:AcceptedPaper.}
e SELECT ?x WHERE {?x o0>:hasDecision ?y. 7y a o0z:Acceptance.}
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Competency questions for alignment (CQAs)

Same as competency questions for ontology authoring [Suarez-Figueroa et al., 2012],
but to be answered over two or more ontologies.

Can be a NL question or SPARQL queries.

e “What are the accepted papers?”
e SELECT ?x WHERE {?x a o0;:AcceptedPaper.}
e SELECT ?x WHERE {?x o0>:hasDecision ?y. 7y a o0z:Acceptance.}

Unary set of instances Which are the accepted papers?

— {paperl, paper2, ...}

Binary set of pairs of instances Who is the author of which paper?
— {(paperl, personl), (paper2, person2), ...}
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Complex alignment generation based on CQAs

e Takes as input a set of CQAs in the form of SPARQL SELECT queries over o1

e Requires 01 and o to have an Abox with at least one common instance for each
CQA
e answer (instances) to each input query are matched with those of a knowledge base
described by o0z

e matching is performed by finding the surroundings of the o, instances which are
lexically similar to the CQA
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Complex alignment generation based on CQAs

SPARQL CQA

SELECT 7x WHERE { 7x a
o1:AcceptedPaper. }

Source KB Target KB

Input: CQA, Source KB and Target KB
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Complex alignment generation based on CQAs

DL formula
o1:AcceptedPaper
SPARQL CQA
SELECT 7x WHERE { 7x a
o1:AcceptedPaper. }
Source KB Target KB

@ Extract formula
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Complex alignment generation based on CQAs

DL formula

o1:AcceptedPaper

SPARQL CQA

SELECT 7x WHERE { 7x a
o1:AcceptedPaper. }

Labels

“accepted paper’@en

Source KB Target KB

@ Extract CQA labels
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Complex alignment generation based on CQAs

DL formula

o1:AcceptedPaper

SPARQL CQA
SELECT ?x WHERE { 7x a

Labels

“accepted paper’@en

o1:AcceptedPaper. }

Source Answers

Source KB

@ Retrieve answers

Target KB
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Complex alignment generation based on CQAs

DL formula

o1:AcceptedPaper

SPARQL CQA
SELECT ?x WHERE { 7x a

Labels

“accepted paper’@en

o1:AcceptedPaper. }

Match (expressed rarget s

link or exact label)
o2:paperl

Source Answers

Source KB Target KB

@ Match answers with target instances
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Complex alignment generation based on CQAs

DL formula

o1:AcceptedPaper

SPARQL CQA
SELECT ?x WHERE { 7x a

Labels

“accepted paper’@en

o1:AcceptedPaper. }

Surroundings

Subgraphs

Match (expressed

! Target Answers
link or exact label)

Source Answers

Source KB Target KB--

@ Get target subgraphs
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Complex alignment generation based on CQAs

DL formula

o1:AcceptedPaper

SPARQL CQA
SELECT 7x WHERE { 7x a
o1:AcceptedPaper. }

Triple labels

Labels

“accepted paper’@en

" decision for
paperl@en

"decision”@en
Surroundings

-------------------------- ‘
02:Acceptance

Labels of triples entities

Subgraphs

Match (expressed
Source Answers . (exp Target Answers
link or exact label)

Source KB Target KB--

@ For each triple, get entity labels
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Complex alignment generation based on CQAs

DL formula

o1:AcceptedPaper

SPARQL CQA
SELECT ?x WHERE { 7x a

Triple labels

Labels

“accepted paper’@en

Similarity measure

" decision for
paperl@en

"decision”@en
Surroundings

-------------------------- ‘
02:Acceptance

o1:AcceptedPaper. }
Labels of triples entities

Subgraphs

Match (expressed

! Target Answers
link or exact label)

Source Answers

Source KB Target KB--

@ Compare the triple entities labels with the CQA labels
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Complex alignment generation based on CQAs

SPARQL CQA
SELECT ?x WHERE { 7x a

o1:AcceptedPaper. }

DL formula

o1:AcceptedPaper

Pruning

:Acceptance

DL formula

Triple labels

Labels

“accepted paper’@en

Similarity measure “ decision for

paperl'@en

“decision ©en
“acceptance' @en
“has decision”@en

Labels of triples entities

Surroundings

Subgraphs

Match (expressed
link or exact label)

Source Answers Target Answers

Source KB Target KB-

Prune the subgraph, transform it into a DL formula
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Complex alignment generation based on CQAs

DL formula

o1:AcceptedPaper 3 02:hasDecision.o2:Acceptance

A

Aggregation

5 0z:hasDecision.oz:Acceptance
Subgraph pruning

SPARQL CQA
SELECT ?x WHERE { 7x a

Triple labels

Labels

“accepted paper’@en

Similarity measure

" decision for
paperl@en

“decision @en
“acceptance @en
“has decision"@en

o1:AcceptedPaper. }
Labels of triples entities

Surroundings

Subgraphs

Match (expressed

! Target Answers
link or exact label)

Source Answers

Source KB Target KB--

Aggregate the formula
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Complex alignment generation based on CQAs

No counter examples

DL formula

3 0p:hasDecision
7Y

Acceptance

Aggregation

3 0z:hasDecision.0p:Acceptance

Subgraph pruning

SPARQL CQA Triple labels

SELECT 7x WHERE { 7x a

Labels

“accepted paper'@en

Similarity measure

" decision for
paperl'@en

o1:AcceptedPaper. }

Labels of triples entities

“decision”@en
Surroundings

-------------------------- ‘
02:Acceptance

Subgraphs

Match (expressed
Source Answers . ( Target Answers
link or exact label)

Source KB Target KB---

@ Look for counter-examples and compute the confidence value
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Complex alignment generation based on CQAs

Correspondence No counter examples

DL formula

( 01 AcceptedPaper , | 5
oz :hasDecision.oz Acceptance , = ) | |2 22 eee

Aggregation

3 0p:hasDecision.ox:Acceptance

Subgraph pruning

SPARQL CQA
SELECT 7x WHERE { 7x a

Triple labels

Labels

“accepted paper'@en

Similarity measure ** decision for

ol:AcceptedPaper. } paperl”@en

Labels of triples entities

“decision”@en

“acceptance’@en
“has decision"@en

Surroundings

02:Acceptance

Subgraphs

Match (expressed

! Target Answers
link or exact label)

Source Answers

Source KB Target KB---

Filter the formulae + @ Generate correspondence
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Thank you !
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